Design and construction - other


The gardening section contains most of my work in design and construction. The page of gardening photographs  forms an introduction to the section. Below, some of the structures I've designed and constructed which are described in more detail in the gardening section. The structures are all in my allotments (the land is rented from Sheffield City council.) On this page, in the column to the left, there's information about 'other' design and construction.

Above, two views of a triangular greenhouse, with extension.

Above, greenhouse interior

Above, an insulated shed, on a platform on sloping ground. Behind it, a shed I bought.


Above, two views of a shelter/apple store (the apples are stored inside the cupboard and on trays placed above the cupboard) with interior part of the exterior.

Above, a long, low greenhouse.

Above, composter (with nesting box attached.)

Above, a pond with raised beds  vine, in an area which had obviously been used as a dumping ground for plastic, rusting metal and other rubbish. The sloping board on the left of the pond is for the use of frogs, and the small frogs which have developed from tadpoles, when they are ready to leave the pond. The trellis support for a grape vine has since been removed.









A hydraulic apple press
A workbench- innovation is still possible
A wood store

 PHD stands for 'Paul Hurt Design,' Paul Hurt being my name. This is just a way of referring to some of the things I design and construct, including some of the designs on this page. It's not the name of a business - none of these things are offered for sale - and there's no reference  to a PhD degree. I don't have one.

A hydraulic apple press

Some advantages of the PHD apple press, which is suitable
for a wide range of users. It's suitable for the owner of a small orchard, for a person with a few apple trees or a person who can obtain apples in quantity - but it's large enough for (very small-scale) commercial operation.

It's cheap to construct. The cost is less than 250 GBP.

It's easy to construct, if the cross-beams are made of timber rather than metal. Wooden cross-beams will have to be much thicker than the steel cross-beams used in my model, although thinner wooden beams can also be used - simply use more of them. More about drilling into metal later. The basic structure is very simple - paired hollow section steel horizontals, painted black here, and paired wooden horizontals at right angle to the metal ones. (Alternatively, the metal horizontals are replaced with thicker wooden ones.). There are four uprights, not, as in many designs, two. These consist of four threaded rods, without the need for a separate stand to support the structure. The pressing has nearly always been carried out at the orchard but here, it's  carried out in a room in my house - excusable, I think. The weather has been poor.

The arrangement for halving or quartering the apples and pulping the apple sections, prior to pressing the pulp:

The design makes for a convenient, efficient work-flow. Everything is near to hand. Apples can be taken from the container, cut into pieces on the nearby horizontal wooden support, thrown into the scratter (which is nearby) and ground into pulp, which falls into the tray, all without unnecessary movement. The only time that it's necessary to move from the spot is to operate the wheel of the scratter (if a helper isn't available.)

The wooden board can be placed on the horizontal members of the upper level, which form a flat surface, once two smaller wooden horizontals, provided with clips, have been put in position. The bin is supported by a metal bar (inside the larger hollow steel section) which can be extended. Later, it's returned to its original position. It gives extra structural strength to the larger steel section. On the lower level are some of the various items that will be used during pressing.

During the apple pressing process, it may be convenient to have a larger working surface available than the small wooden rectangle shown above. The large wooden tray can be taken from the lower level and placed on this higher level. Obviously, it may come in useful at other times, and for other purposes, throughout the year, in fact.

This photo shows some of the other components of the press, the hydraulic bottle jack and the pressing sunface. It also shows some optional additions to the structure. As well as the four main threaded rods, four smaller diameter threaded rods can be used, attached to two small metal sections. Two of these smaller rods are shown here, in front of the main rod. These are necessary if a higher capacity jack is used.

The press can be used on uneven ground as well as flat surfaces, if the position of the nuts is adjusted. This will often be useful in an orchard. If the press is placed on a hard surface, as here, castors can be fitted very quickly. The two sub-units at the ends of the top hollow section - they contain the four smaller diameter threaded rods - are removed by loosening four nuts. Here, the two units are shown against a door.

Four casters are screwed into the lower ends of the threaded rods and then the two sub-units are put back at the ends of the steel horizontal. One of the castor-pair at the end of one of the sub-units. One castor in each pair has a brake to stop movement when it's applied.

If castors aren't used, the press can be moved short distances by two reasonably strong people. The press can be dismantled easily, simply by loosening nuts or pulling away pieces with clips, and it can be re-erected very easily. None of the separate pieces are very heavy. The heaviest are the two hollow section horizontals. Each one weighs about 2.8 kg.

The main items to be bought or acquired, if the version with metal cross-beams is constructed. The prices given are the approximate ones I paid, except for 12+mm threaded rods (I used the ones I already had, which happened to be stainless steel - much more expensive than the price quoted below. The cheaper ones are completely suitable.

The most expensive item by far is the one given first:

4 sheets of HDPE sheet for the racks of the press (many people would use 5 or perhaps 6): 72 GBP. Plywood sheets can be substituted - much cheaper and perfectly usable, even if less easy to keep clean and less durable.
Threaded rods, 16mm diameter: 19 GBP for a pack of 5 (only 4 are used.)
Threaded rods, 12mm diameter (if the optional units shown in the photo above are attached to the ends of the upper metal cross-beams): 8 GBP.
Two lengths of hollow rectangular section structural steel: 15 GBP.
Bottle jack (I used an 8 tonne hydraulic jack, the minimum size recommended for a press of this size): 25 GBP.
Curtain net, to make the cloths which are filled with apple pulp in the former before pressing: 9 GBP.
Waterproof, food-safe cloth (manufactured by Pro-care), used for lining the tray, with an outlet to direct the apple juice to a storage container (other options, a stainless steel tray or varnishing the tray with a suitable product): 30 GBP.
Timber board, to construct the tray (a piece was left which can be used for the support for chopping boards when the apples are halved or quartered): 30 GBP.
Other wood, to construct the wooden horizontal members of the frame, the top plate and the form (I used ordinary softwood, spruce): estimated 15 GBP.

If castors are used, these will add to the cost. I paid 40 GBP for the four castors.

In addition, varnish was used for the wood and metal paint for the rectangular section. I used two convenient products, very easy to apply, Ronseal diamond hard Interior Varnish and Hammerite direct to rust metal paint. Costs not given here: only a small part of the contents of the containers had to be used.

It's easy to construct the version with these metal cross-beams, if  a bench press or larger press is available for drilling the holes. Ordinary portable drills can also be used, provided they have the necessary power and can take a 16 mm drill bit, and provided the person doing the drilling is cautious but confident - when the drill bit begins to break through the metal, there are large torque forces and the drill has to be held very firmly.

A workbench - innovation is still possible

No innovations are possible in workbench design and construction - everything that could have been thought of has already been thought of. That's a common opinion, but I don't share it. I'd claim that the PHD workbench does include innovations, even if the innovations aren't dramatic. Of course, I don't claim, of course, that an improved workbench necessarily leads to improved woodworking or metal working.

There's general agreement that a good workbench has to be solid and heavy, to provide a stable base for holding the wood or metal which is being worked. I don't dispute that. I think the same. The workbench I've designed is solid and heavy.

Manufacturers charge much more for very solid and heavy workbenches than  for very light and flimsy ones, but this one is cheap to construct. I used an old door for the top of the bench - it had been thrown out and put in a skip - together with a plywood sheet, but if a free-of-charge door can't be found, the cost of the workbench is still very low. For reasons I explain later, I put the door on top and the plywood sheet underneath. Anyone who wants to build a similar workbench and has a usable door is completely free to do it differently.

The door has an obvious flaw - there's a hole at one side where the lock was. The standard way of dealing with the hole is to use filler or to plug the hole with a circular section of wood, although it's  difficult to disguise holes of this size. The hole can be hidden very easily, for instance, by bolting a pillar drill in this area (a thick support is underneath the bench here.)

Workbenches which are solid and heavy are difficult to move. Shifting loads of this size is a job which should preferably be avoided. Changed circumstances may make it essential to move a  wonderful and very substantial workbench some distance. There are any number of reasons - a bad leak in the roof above the workbench, the purchase of a new piece of equipment which would be better off in the place where the workbench is now ...

This workbench is very easy to move, as I explain now. Workbench design doesn't have to be like tent design - the ideal backpacking tent is very spacious, very light, very strong - capable of withstanding gales - very cheap, very easy to erect and very easy to dismantle. In tent design, far more than workbench design, the problem of incompatible ends is a real one. In workbench design, it's much easier to achieve advantages without corresponding disadvantages.

We can move the workbench within the workshop or working area very easily, without taking it to bits. We can move the workbench longer distances by taking it to bits, something which is very easy. It's just as easy to assemble it.

How do we move such a heavy object within the workshop or working area? Answer, the bench has a jacking point. Place a heavy hydraulic jack or a small and light hydraulic bottle jack or a non-hydraulic vehicle jack under the jacking beam, at more or less the centre of the beam. I see advantages in equipping workbenches, like motor vehicles, with beams which are strong enough for the purpose. These beams are at the ends of the workbench, not the sides, of course.

When one end is in the air, attach blocks to the two legs - or supporting members - of the workbench at this end. The blocks are equipped with heavy-duty spindle castors. These castors have brakes, so that once the other end is raised, the castors don't move. Operate the jack so that this end is gently lowered and the castors take the weight of the workbench. Go to the opposite end and do the same. There's no need for the castors at this end to have brakes. Once this end has been gently lowered, the workbench is mobile.

Why is this workbench so easy to erect and dismantle? Primarily, because it doesn't rely upon mortice and tenon joints. The pieces which make up the workbench are either bolted together, with carriage (coach) bolts or, in some cases, where strength isn't a necessity, by means of screws, Unlike nails, of course, screws can easily be removed. The screws used in this workbench are substantial ones of M12 diameter, but are easy to insert and remove, with the aid of a club hammer.

A wood store

A very simple structure for storing wood to be used in a multi-fuel stove. The wood store is in my small back garden. The wood store is constructed from off-cuts of railway sleepers, which support horizontals made from decking boards. The store still has to be finished with oil/varnish after it has dried out. The log sections here still have to be cut into smaller sections for seasoning.